Forced vibration analysis of inhomogeneous quasicrystal coating in a thermal environment

نویسندگان

چکیده

The tremendous attention of researchers has been attracted to the unusual properties quasicrystals in coatings. In this paper, exact solutions functionally graded multilayered two-dimensional quasicrystal coating structures a thermal environment are derived for advanced boundary-value problems with mixed boundary conditions. state space method is formulated coupling linear elastic theory that derives equations along thickness direction. supported conditions x- direction and simply y- subjected time-harmonic temperature loadings, which represented by means differential quadrature technique Fourier series expansions, respectively. Traction on both bottom top surfaces free, perfect mechanical contacts between constituents incorporated at internal interfaces. A global propagator matrix, connects field variables interface those whole structure, further completed joint matrices overcome numerical instabilities. Finally, three application examples proposed throw light various effects power law index, frequency, different three-layer structures. present solution can serve as benchmark modeling based methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear vibration analysis of axially moving strings in thermal environment

In this study, nonlinear vibration of axially moving strings in thermal environment is investigated. The vibration haracteristics of the system such as natural frequencies, time domain response and stability states are studied at different temperatures. The velocity of the axial movement is assumed to be constant with minor harmonic variations. It is presumed that the system and the environment...

متن کامل

Effect of Thermal Environment on Vibration Analysis of Partially Cracked Thin Isotropic Plate Submerged in Fluid

Based on a non classical plate theory, an analytical model is proposed for the first time to analyze free vibration problem of partially cracked thin isotropic submerged plate in the presence of thermal environment. The governing equation for the cracked plate is derived using the Kirchhoff’s thin plate theory and the modified couple stress theory. The crack terms are formulated using simplifie...

متن کامل

Axially Forced Vibration Analysis of Cracked a Nanorod

Thisstudy presents axially forced vibration of a cracked nanorod under harmonic external dynamically load. In constitutive equation of problem, the nonlocal elasticity theory is used. The Crack is modelled as an axial spring in the crack section. In the axial spring model, the nonrod separates two sub-nanorods and the flexibility of the axial spring represents the effect of the crack. Boundary ...

متن کامل

Nonlinear Vibration Analysis of Embedded Multiwalled Carbon Nanotubes in Thermal Environment

In this article, based on the Euler-Bernoulli beam theory, the large-amplitude vibration of multiwalled carbon nanotubes embedded in an elastic medium is investigated. The method of incremental harmonic balance is implemented to solve the set of governing nonlinear equations coupled via the van der Waals (vdW) interlayer force. The influences of number of tube walls, the elastic medium, nanotub...

متن کامل

Vibration Analysis of Rotary Tapered Axially Functionally Graded Timoshenko Nanobeam in Thermal Environment

In this paper, vibration analysis of rotary tapered axially functionally graded (AFG) Timoshenko nanobeam is investigated in a thermal environment based on nonlocal theory. The governing equations of motion and the related boundary conditions are derived by means of Hamilton’s principle based on the first order shear deformation theory of beams. The solution method is considered using generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Materials

سال: 2022

ISSN: ['2296-8016']

DOI: https://doi.org/10.3389/fmats.2022.963149